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Building on our recent work on induced-charge electro-osmosis (ICEO) and elec-
trophoresis (ICEP), as well as the Russian literature on spherical metal colloids, we
examine the rich consequences of broken geometric and field symmetries upon the
ICEO flow around conducting bodies. Through a variety of paradigmatic examples
involving ideally polarizable (e.g. metal) bodies with thin double layers in weak fields,
we demonstrate that spatial asymmetry generally leads to a net pumping of fluid
past the body by ICEO, or, in the case of a freely suspended colloidal particle,
translation and/or rotation by ICEP. We have chosen model systems that are simple
enough to admit analysis, yet which contain the most important broken symmetries.
Specifically, we consider (i) symmetrically shaped bodies with inhomogeneous surface
properties, (ii) ‘nearly symmetric’ shapes (using a boundary perturbation scheme),
(iii) highly asymmetric bodies composed of two symmetric bodies tethered together,
(iv) symmetric conductors in electric-field gradients, and (v) arbitrarily shaped
conductors in general non-uniform fields in two dimensions (using complex analysis).
In non-uniform fields, ICEO flow and ICEP motion exist in addition to the more
familiar dielectrophoretic forces and torques on the bodies (which also vary with the
square of the electric field). We treat all of these problems in two and three dimensions,
so our study has relevence for both colloids and microfluidics. In the colloidal context,
we describe principles to ‘design’ polarizable particles which rotate to orient themselves
and translate steadily in a desired direction in a DC or AC electric field. We also
describe ‘ICEO spinners’ that rotate continuously in AC fields of arbitrary direction,
although we show that ‘near spheres’ with small helical perturbations do not rotate, to
leading order in the shape perturbation. In the microfluidic context, strong and steady
flows can be driven by small AC potentials applied to systems containing asymmetric
structures, which holds promise for portable or implantable self-powered devices.
These results build upon and generalize recent studies in AC electro-osmosis (ACEO).
Unlike ACEO, however, the inducing surfaces in ICEO can be physically distinct from
the driving electrodes, increasing the frequency range and geometries available.

1. Introduction
Electrokinetic phenomena involve the interaction between ionic screening clouds,

applied electric fields, and low-Reynolds number hydrodynamic flows. They have
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long played a central role in colloid and interface science (Dukhin & Derjaguin
1974; Dukhin & Shilov 1974; Anderson 1989; Russel, Saville & Schowalter 1989;
Lyklema 1995), analytical chemistry and separation science (Giddings 1991), and
electrochemistry (Newman 1991). The basic physical mechanism is as follows. An
ionic screening cloud, or double layer, forms around a charged solid surface in
a liquid electrolyte. This double layer is typically thin (∼ nm) and can often be
considered small compared to other geometric features in the system (as we do here).
An externally applied electric field exerts a force on the ions in the double layer, giving
rise to a fluid flow that exponentially approaches the Smoluchowski ‘slip velocity’ just
outside the charge double layer,

us = −εζ

η
E‖. (1.1)

Here ε and η are the dielectric constant and viscosity of the liquid (typically water),
E‖ is the component of the applied electric field tangent to the surface, and ζ is the
‘zeta potential’, or the potential drop across the screening cloud. When the surface is
held fixed, us drives a flow termed electro-osmosis; when the surface defines a freely
suspended particle, the particle moves via electrophoresis.

Recent years have seen a tremendous effort towards developing microfluidic ‘labs
on a chip’ for miniaturized, automated and parallelized experiments (see, e.g. Reyes
et al. (2002) for a historical review). Electrokinetics plays the key role in many
microfluidic separation and analysis devices (Bruin 2000; Verpoorte 2002; Lion et al.
2003; Tegenfeldt et al. 2004; Ugaz et al. 2004), and interest in this classic subject
has thus been renewed (Viovy 2000; Slater et al. 2003; Stone, Stroock & Ajdari
2004; Squires & Quake 2005). In most cases, electrophoresis is used for separations.
Electro-osmosis has also been explored as a fluidic manipulation tool, although
various disadvantages (discussed below) preclude its widespread use in actual devices.

1.1. ‘Induced-charge’ electrokinetic phenomena

This is the second in a pair of in-depth papers on induced-charge electro-osmosis
(ICEO) at polarizable (metallic or dielectric) surfaces, whose basic ideas we have
summarized in the first paper in the context of microfluidic applications (Bazant &
Squires 2004). Our original motivation was to identify the essential physics behind ‘AC
electro-osmosis’ at micro-electrode arrays, discovered independently by Ramos et al.
(1999) in experiments and by Ajdari (2000) in theoretical calculations. We showed
that the basic slip mechanism, which we call ‘ICEO’, requires neither electrodes nor
AC voltages and can arise in many other contexts. For example, we gave some new
microfluidic examples of ICEO flows around dielectrics and conductors of either fixed
total charge or fixed potential in general DC or AC applied fields, which have since
been observed in experiments by Levitan et al. (2005).

We also pointed out that similar flows had been studied in the Russian literature
since the 1980s in the seemingly different context of metal colloids (Murtsovkin
1996), although this imporant work had gained little (if any) international attention.
In particular, the ICEO flow around an uncharged metal sphere was first predicted by
Gamayunov, Murtsovkin & Dukhin (1986) and later observed, at least qualitatively,
in a few experiments (see below). Earlier still, the electrophoresis of a charged
metal sphere had also been considered in the school of Dukhin & Derjaguin (1974)
occasionally since (at least) the time of Levich (1962), although the electrophoretic
mobility (which is unaffected by ICEO) was emphasized, rather than the (strongly
influenced) flow profile. In general, more attention was given to the induced dipole



Breaking symmetries in induced-charge electro-osmosis and electrophoresis 67

(a) (b)

Eb

us

+ +
++

++

---
-

-
-

–
– – – ––

+
++++

+

+ +
++

++

–– –
–

–
–

Figure 1. A representation of induced-charge electro-osmotic (ICEO) flow: (a) in steady-state,
an induced charge cloud, dipolar in nature, is established in order that no field line (and
therefore electrolytic current) terminates at the surface of the conducting body. (b) The
steady-state electric field drives the dipolar induced charge cloud, setting up a quadrupolar
ICEO flow.

moment and its effect on dielectrophoresis rather than the associated electrokinetic
flows in polarizable colloids (Dukhin & Shilov 1974, 1980). All of these studies fit
into the larger context of ‘non-equilibrium electro-surface phenomena’ in colloids,
studied extensively in the Soviet Union since the 1960s (Dukhin 1993). This work
deserves renewed attention from the perspective of designing colloids and microfluidic
devices, since geometrical complexity (the focus of this paper) can now be engineered
to control flows and particle motions, in ways not anticipated by the many earlier
studies of ideal colloidal spheres.

Let us briefly review how ICEO differs from standard, ‘fixed-charge’ electro-osmosis.
Both effects involve an electro-osmotic flow that occurs because of the action of an
applied field upon the diffuse cloud of screening ions that accumulates near a surface.
The key difference between standard electro-osmosis and ICEO lies in the nature of
the screening cloud itself (and thus ζ ). In standard electro-osmosis, the zeta potential
is an equilibrium material property of the surface and is thus typically taken to be
constant. In contrast, ICEO flows (around conducting or polarizable surfaces) involve
a charge cloud that is induced by the applied field itself, giving a non-uniform induced
zeta potential of magnitude Eba, where a is a geometric length scale characteristic of
the body. The velocity scale for ICEO,

U0 =
εaE2

b

η
, (1.2)

depends on the square of the electric field, so a non-zero average ICEO flow persists
even in an AC electric field.

Figure 1 illustrates the phenomenon. Consider an inert (ideally polarizable) conduct-
ing body immersed in an electrolyte subject to a suddenly applied electric field, so
the electric field lines initially intersect the conducting surface at right angles in order
to satisfy the equipotential boundary condition. The electric field drives an ionic
current in the electrolyte, however, and ions cannot penetrate the solid/liquid surface
without electrochemical reactions. Instead, at low enough voltages to ignore surface
conduction (see below), the ions that intersect the conducting surface are stopped
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and accumulate in the double layer. This induced charge cloud grows and expels
field lines, until none intersect the conducting surface, as shown in figure 1(a). The
induced charge cloud is dipolar in character, giving a quadrupolar ICEO flow, as
seen in figure 1(b). Similar, only weaker, ICEO flows occur around dielectrics, but for
simplicity here we will focus on ideally polarizable conducting bodies.

The dynamics of double-layer charging at an electrode (or more generally, a pol-
arizable surface) is a subtle problem with a long and colourful history (Bazant,
Thornton & Ajdari 2004). In the ‘weakly nonlinear’ regime where we perform
our analysis, perturbations to the bulk ionic concentrations are negligible beyond
the Debye (or Gouy) screening length λD , assumed to be much smaller than the
geometrical scale, λD � a. In this limit, the electric field is determined, independent
of any fluid flow, by an equivalent circuit model consisting of a homogeneous bulk
resistor coupled to double-layer capacitors. The ‘RC time’ for charging these capacitors
and screening the bulk field thus involves a product of the two length scales,

τc =
λDa

D
, (1.3)

where D is a characteristic ionic diffusivity.
In the present context, this classical circuit model has been applied to metal colloidal

spheres (Simonov & Shilov 1977; Squires & Bazant 2004) and linear micro-electrode
arrays (Ramos et al. 1999; Ajdari 2000; Gonzalez et al. 2000), where τ−1

c appears as
the critical frequency for AC electro-osmosis. In less simple situations, such as many
given below, more than one length scale characterizes the geometry, and thus the
frequency response can be complicated. Nevertheless, the longest length scale is still
associated with the longest time scale via (1.3), as long as the voltage is small enough
not to perturb the bulk concentration (which would introduce the longer time scale for
bulk diffusion, a2/D). Since our goal here is to expose the rich spatial dependence of
ICEO flows, we postpone a careful study of their time dependence for future work;
thus we consider only steady DC fields and flows, which also approximate the time-
averaged flows that occur under low-frequency AC fields (ω � 2π/τc).

1.2. Breaking symmetries in electrokinetics

In Squires & Bazant (2004), we focused on ICEO as a means to manipulate fluids
in microfluidic devices, exemplified by flows around polarizable cylindrical posts in
uniform applied fields, similar to those visualized in the subsequent experiments of
Levitan et al. (2005). Analogously, the Russian literature on what we call ‘ICEO’
in polarizable colloids has also focused on the simplest case of metal spheres
(Gamayunov et al. 1986; Murtsovkin 1996), albeit with more difficult experimental
verification. The theme of simple geometries also characterizes the early work on AC
electro-osmosis at a symmetric pair of micro-electrodes (Ramos et al. 1999; Gonzalez
et al. 2000).

In the present paper, we focus more generally on ICEO flows with broken sym-
metries, inspired by the work of Ajdari, who has long emphasized and explored the
rich effects of asymmetry in electrokinetics, both linear (Ajdari 1995, 1996, 2002b;
Long & Ajdari 1998; Gitlin et al. 2003) and nonlinear (Ajdari 2000, 2002a; Studer
et al. 2002, 2004). In the specific context of ICEO, Ajdari (2000) first predicted that
an asymmetric array of electrodes, subject to AC forcing at a particular frequency,
could function as a microfluidic pump, as Brown, Smith & Rennie (2001), Studer
et al. (2002) and Mpholo, Smith & Brown (2003) later demonstrated experimentally,
although the simple theory clearly breaks down at large voltages and large electrolyte
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concentrations (Studer et al. 2004). Ramos et al. (2003) have also begun to extend
their studies of AC electro-osmosis to asymmetric pairs of electrodes, which can drive
a directed fluid flow, unlike the symmetric pair of Ramos et al. (1999).

In the Russian colloids literature (Dukhin & Shilov 1974, 1980), the induced dipole
moment has been calculated for dielectric spheroids in electrolytes, but it seems
there has been no theoretical work on ICEO flows around asymmetric polarizable
particles, although non-uniform electric fields applied to spherical particles have been
considered. Shilov & Éstrela-Lópis (1975) were apparently the first to note that
electro-osmotic flows play a major role in the classical problem of dielectrophoresis
(DEP; Pohl 1978) when the fluid is an electrolyte (or ‘dipolophoresis’, as it was
called in the Russian literature). The theory for dielectric and conducting spheres
in a uniform-gradient field, including some effects of concentration polarization and
surface conductance, has been developed by Shilov & Simonova (1981) for thin
double layers and by Simonova, Shilov & Shramko (2001) for arbitrary double-layer
thickness. For conductors, the effects of DEP and ICEP are in close competition, and
for a metal sphere they precisely cancel to yield zero particle velocity (although not
zero flow). As we show below, however, this is a very special case, since a metal cylinder
(or any other shape) will generally move if free to do so, or pump fluid if it is fixed.

Otherwise, in the Russian literature, there have been a few qualitative experiments
on ICEP for asymmetric (or ‘anisometric’) particles, and it is generally observed that
nearly spherical metal particles move in AC fields, contrary to the theory for an
ideal sphere. Gamayunov & Murtsovkin (1987) and Murtsovkin & Mantrov (1990)
reported the motion of quartz particles in all possible directions in a uniform AC
field, each moving toward its most pointed end. However, they could only observe
particles near the walls of the experimental container, and could not say whether
the resulting motion arose due to the influence of the walls, or whether this motion
would also occur in the bulk of the fluid. Below we show that ICEP can drive motion
toward either the blunt end or the pointed end of an arrow-like particle, depending
on its precise shape, and we give simple criteria to determine the direction in which
an asymmetric particle will move.

1.3. Overview of the present work

By departing from electrodes, AC forcing and simple geometries, our theoretical work
offers many new opportunites to exploit broken symmetries to shape microfluidic flows
by ICEO or to manipulate colloidal particles by ICEP, as summarized by Bazant &
Squires (2004). Building on our paper, Yariv (2005) has described general tensor
relations for the translation and rotation of three-dimensional conducting particles
by ICEP; he has also used the reciprocal theorem for Stokes flows (Brenner 1964;
Stone & Samuel 1996) to calculate ICEP velocities, as we do below (in both two
and three dimensions). Here instead, we present detailed calculations for a variety
of paradigmatic problems, which serve to demonstrate basic physical principles, and
to guide the engineering design of polarizable colloids and microfluidic structures.
We examine broken symmetries of the ‘working’ conductor as well as in the applied
background field and demonstrate that ICEO fluid pumping (or ICEP motion) can
occur in any direction relative to the background field by a suitable breaking of
spatial symmetry.

In the microfluidic context, a notable effect of broken symmetries is to allow steady
ICEO flows to be driven perpendicular to an AC applied field. In the context of
linear electrokinetics, Ajdari (1996, 2002b) predicted that charge-patterned surfaces
with special geometrical features can generate flows transverse to the applied field,
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which Gitlin et al. (2003) demonstrated experimentally. Such a strategy allows a
strong electric field to be established by applying a relatively small potential across a
microchannel. This significantly reduces the voltage required to drive a given flow over
conventional electro-osmotic flow devices, and thus represents a promising candidate
for portable, self-powered microfluidic devices. However, standard (linear) electro-
osmosis requires a steady DC voltage, which in turn necessitates electrochemical
reactions that introduce bubbles or otherwise foul the fluid. Such concerns are typically
addressed by placing electrodes far from the working fluid to avoid contamination,
but this contradicts the advantages of transverse electro-osmosis. On the other hand,
the transverse ICEO flows described here are driven by AC voltages that alleviate
these problems, and may enable fully miniaturized microfluidic systems.

The ability to drive strong flows by applying small potentials across closely spaced
electrodes has been a central motivation for AC electro-osmotic pumps (Ajdari 2000;
Brown et al. 2001; Studer et al. 2002, 2004; Mpholo et al. 2003; Ramos et al. 2003). In
such systems, the surfaces over which charge clouds are induced are the same as those
to which the driving potentials are applied, giving an ‘optimal’ frequency for pumping
and vanishing response at both low and high frequencies. By contrast, the inducing
surfaces and driving electrodes in ICEO/ICEP systems can be physically distinct,
increasing the range of driving frequencies available (e.g. ICEO flows persist down to
zero frequency), and also allowing a broader class of geometries to be employed.

In the colloidal context, particles generally experience no net electrophoretic motion
under AC applied fields, owing to the linearity of electrophoresis. The induced-charge
electro-osmotic flow around asymmetric conducting or polarizable particles, however,
can lead to a net particle motion with components either along or transverse to the
applied field, which we call ‘ICEP’. In fact, we provide simple principles to design
particles which align themselves and then move either along or transverse to the
applied field or which spin continuously in place at a given orientation relative to
the field. Furthermore, ICEO flow is longer-ranged (u ∼ r−2) than standard linear
electrophoresis (u ∼ r−3), and affects particle interactions in dense colloids. Indeed,
this was the original motivation for studying ‘ICEO flows’ in the Russian literaure
(Gamayunov et al. 1986).

The paper is organized as follows. Section 2 presents the mathematical model for
ICEO in weak fields with thin double layers and also describes the fundamentals of
dielectrophoresis. We then discuss the ICEO and ICEP of conducting bodies whose
symmetry is broken owing to: a spatially asymmetric surface coating (§ 3); a small
shape asymmetry that is treated perturbatively (§ 4); and a composite body composed
of two electrically connected spheres or cylinders of different radii (§ 5). Section 6
briefly discusses ICEO and ICEP of symmetric conducting bodies in a uniform-
gradient field. Finally, in § 7 the general problem of ICEO flow and multipolar DEP
force is solved in two dimensions using complex analysis, for any shape in an arbitrary
divergence-free background field.

2. Basic theory for thin double layers and weak electric fields
2.1. Bulk electric field and induced zeta potential

The general problem of ICEO flow around an asymmetric metal or dielectric object is
complicated, so we restrict our analysis to the case of an ideally polarizable conducting
body with a thin double layer, λ� a, in a weak electric field, Eba � kT /e, as in our
previous work (Squires & Bazant 2004). We will also assume the equilibrium zeta
potential to be weak, as discussed below. In this limit, the induced zeta potential
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arises from the equivalent circuit of an Ohmic bulk resistor coupled to a double-
layer capacitor on the surface, which drives a Stokes flow via surface slip given by
equation (1.1). This standard circuit model for nonlinear electrokinetics (e.g. used by
Gamayunov et al. 1986; Ramos et al. 1999; Ajdari 2000; Bazant & Squires 2004) can
be derived systematically by matched asymptotic expansions (Gonzalez et al. 2000;
Squires & Bazant 2004).

The circuit approximation is also valid (with a nonlinear differential capacitance) at
somewhat larger applied fields, as long as the (steady-state) Dukhin number (Lyklema
1995), or its generalization for time-dependent problems (Bazant et al. 2004), remains
small. The Dukhin number†, Du = σs/aσb, is defined as the dimensionless ratio of
surface (double-layer) conductivity σs to bulk conductivity σb. Our analysis breaks
down at Du ≈ 1, which occurs when the total (equilibrium + induced) zeta potential
reaches ζ ≈ 2kT /e ≈ 50 mV in most electrolytes. For uncharged conductors, this sets an
upper bound on the voltage applied across the body by the applied field, Eba < 50 mV.
In such large electric fields, the double layer on the conducting body in regions of
large zeta potential adsorbs enough neutral salt to perturb the bulk concentration
(Bazant et al. 2004), which we neglect here in order to make the problem analytically
tractable.

Assuming uniform bulk conductivity, the electrostatic potential Φ satisfies Laplace’s
equation (Ohm’s law),

∇2Φ = 0, (2.1)

everywhere outside the infinitesimally thin double layer around our ideally polarizable
body. At the edge of the bulk region Γ , immediately adjacent to the body, a Neumann
boundary condition expresses zero normal current,

n̂ · ∇Φ(r) = 0 for r ∈ Γ (2.2)

in the absence of tangential surface conduction or Faradaic electrochemical reactions.
The far-field boundary condition,

Φ ∼ Φa = Φb − Eb · r − 1
2
Gb : r r − 1

6
Hb : r r r − . . . as r → ∞, (2.3)

describes the applied potential Φa (and divergence-free electric field, Ea = −∇Φa)
which would exist in the absence of the body. Here, Φb is the background
potential; Ei

b = −∂Φa/∂ri the background electric field (vector); G
ij
b = −∂2Φa/∂ri∂rj

the background-field gradient matrix; H
ijk
b = − ∂3Φa/∂ri∂rj ∂rk the background-field

second derivative tensor; etc.
In steady state, the zeta potential ζ of the double layer is simply the difference

between the potential of the conductor Φ0 and the bulk potential just outside the
double layer,

ζ (r) = Φ0 − Φ(r) for r ∈ Γ. (2.4)

For small zeta potentials ζ � kBT /e, ζ can be decomposed into two components,

ζ (r) = ζ0 + ζi(r), (2.5)

where ζ0 is constant, and ζi(r) is spatially varying, with
∫

ζi dA = 0. For a linear
double-layer capacitance per unit area C, ζ0 is proportional to the total charge Q0 on

† This dimensionless group was first discussed by J. J. Bikerman, but its fundamental importance
in electrokinetics was first emphasized by S. S. Dukhin. Therefore, even though it is called ‘Rel’ in
the Russian literature (Dukhin & Shilov 1974; Dukhin 1993), we follow Lyklema (1995) in calling
it the ‘Dukhin number’.
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the body,

Q0 = −C

∫
Γ

ζ (r) dA = −ACζ0, (2.6)

where A is the surface area of the conductor. In the case of a colloidal particle, the
total charge Q0 is fixed, and ζ0 represents the equilibrium zeta potential. In the context
of microfluidics, the conductor’s potential Φ0 relative to Φb (and thus ζ0 and Q0) may
also be controlled externally to drive ‘fixed-potential ICEO’ (Squires & Bazant 2004).
In both cases, the standard electro-osmotic/electrophoretic flows around a body with
constant zeta potential ζ0 are well known. Instead, to focus on the spatial structure
of ICEO flows, we will typically assume Q0 = ζ0 = 0.

2.2. ICEO flow and ICEP motion

Once the electrostatic problem has been solved, the ICEO flow is obtained by solving
the Stokes equations,

η∇2u − ∇p = 0, ∇ · u = 0, (2.7)

subject to zero normal fluid flux

n̂ · u(r) = 0 for r ∈ Γ (2.8)

and to a (tangential) slip velocity given by (1.1),

u(r) = us(r) =
ε

η
ζ (r)∇Φ(r) for r ∈ Γ (2.9)

at the surface of the conductor, just outside the double layer.
The boundary condition for the flow at infinity depends on the system studied. In

the colloidal context, the induced-charge electrophoretic velocity U ICEP and rotation
Ω ICEP of the body are typically of interest, and are determined by requiring that there
be no net force or torque on the body and imposing vanishing flows at infinity. This
task is facilitated by an elegant set of relations which follows from the reciprocal
theorem for Stokes flows (Stone & Samuel 1996),

F̂ · U ICEP = −
∫

us · σ̂ F · n̂ dA, (2.10)

L̂ · Ω ICEP = −
∫

us · σ̂L · n̂ dA, (2.11)

where U ICEP is the translational velocity and Ω ICEP the angular velocity of a force-free
and torque-free body on which a slip velocity us is specified. Here, σ̂ F and σ̂L are the
stress tensors due to complementary Stokes flow problems – respectively, the same
object undergoing pure translation (with force F̂), and pure rotation (with torque
L̂). General relations of the type (2.10)–(2.11) were first derived by Brenner (1964),
and they have recently been applied to ICEP of asymmetric particles in uniform
fields by Yariv (2005). In the special case of spherical bodies, Stone & Samuel (1996)
have noted that these relations reduce to simple formulae for the linear and angular
velocity,

U ICEP = − 1

4π

∫
us(θ) dΩ, (2.12)

Ω ICEP = − 3

8πa

∫
r̂ × us(θ) dΩ, (2.13)

where dΩ is an element of solid angle.
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Microfluidic ICEO systems, on the other hand, typically involve the ICEO flow
around structures that are held in place. In that case, the above strategy is modified by
simply superposing two flows: (i) (force-free) ICEP as described above, and (ii) the flow
around the body held fixed in an equal and opposite flow u∞ = U ICEP + Ω ICEP × r .
Two-dimensional Stokes flows around forced cylinders diverge at infinity (the so-
called ‘Stokes paradox’, addressed by Proudman & Pearson 1957), complicating this
approach. In practical situations, this divergence is cut off at some length scale,
such as the cylinder length (at which point the flow becomes three-dimensional), the
distance to a nearby solid surface, or the inertial length scale a/Re.

The approach we adopt here is to calculate the ICEP flow (which, to leading
order, is independent of the system geometry), with the understanding that ICEO
around fixed cylindrical bodies will require the mobility problem to be solved for the
particular system of interest. The Stokes flow around an infinite cylinder translating
towards or along a solid planar wall located a distance d away, for example, is
well-posed, and has been treated by Jeffrey & Onishi (1981). Nevertheless, the ICEP
rotation and velocity must still be determined for cylindrical bodies. Fortunately,
and perhaps remarkably, (2.10) and (2.11) hold for two-dimensional bodies, despite
the logarithmic divergence that occurs for forced two-dimensional Stokes flows. For
circular cylinders, the simplified formulae read

U ICEP = − 1

2π

∫ 2π

0

us(θ) dθ, (2.14)

Ω ICEP = − 1

2πa

∫ 2π

0

r̂ × us(θ) dθ. (2.15)

We discuss the subtleties in the Appendix.

2.3. Dielectrophoresis and electrorotation

A non-uniform background electric field generally exerts an electrostatic force and
torque on a polarizable solid body, whether or not ICEO fluid slip occurs at the
surface. In a microfluidic device, this force and torque, in addition to viscous inter-
actions with the walls, must be opposed in order to hold the body fixed in place while
driving ICEO flow. For a colloidal particle, the electrostatic force and torque cause
dielectrophoresis (DEP) and electrorotation, respectively (Pohl 1978), in addition to
the force-free and torque-free ICEP motion. As we shall see, the competition between
DEP and ICEP is rather subtle, since the two effects act in opposite directions with
similar magnitude for ideally polarizable bodies.

The electrostatic force derives from the action of the non-uniform applied field
on the induced charge distribution, typically characterized by low-order multipole
moments for an isolated body. These moments appear as coefficients of the far-field
expansion of the electrostatic potential (Jackson 1975):

(4πε)(Φ − Φa) ∼ Q̃0

r
+

p · r
r3

+
1

2

Q : r r
r5

+ . . . as r → ∞ (2.16)

in three dimensions, or

(2πε)(Φ − Φa) ∼ Q̃0 ln r +
p · r
r2

+
1

2

Q : r r
r4

+ . . . as r → ∞ (2.17)

in two dimensions, where Q̃0 is the monopole moment (net charge), p is the dipole
moment induced by the applied field Eb; Q is the quadrupole moment induced by
the applied field gradient Gb; etc. Note that the multipole moments also reflect ionic



74 T. M. Squires and M. Z. Bazant

screening of the ‘bare’ moments of the charge distribution on the body, which would
exist in the absence of the electroylte. Here, we consider conductors and dielectrics
without any fixed charges, so we have only the bare total charge Q0, which is typically
screened to give Q̃0 = 0, although Q̃0 
= 0 is possible out of equilibrium in fixed-
potential ICEO (Squires & Bazant 2004). Since the leading induced term in the far
field is a dipole, much attention has focused on calculating the induced dipole moment
of dielectric and conducting colloids, especially in the Russian literature (Dukhin &
Shilov 1980). Higher-order induced multipoles have recently been considered in the
classical context of DEP in non-conducting liquids (Washizu & Jones 1994; Jones &
Washizu 1996; Wang, Wang & Gascoyne 1997), but we are not aware of any prior
work on general applied fields in electrolytes, also accounting for ICEO flow.

The total force and torque on any volume of the fluid are conveniently given in
terms of the stress tensor, σσσ , by

F =

∫
σσσ · n̂ dA, (2.18)

L =

∫
r ×σσσ · n̂ dA. (2.19)

The stress tensor contains contributions from osmotic, electrical and viscous stresses
on the fluid, σσσ = −p I + σσσM + σσσ v , where

σσσM = −(ε/2)E2I + εE E, (2.20)

σσσ v = η(∇u + (∇u)T ), (2.21)

are the Maxwell and viscous stress tensors, respectively (Russel et al. 1989; Squires &
Bazant 2004; Yariv 2005).

To remove any confusion due to ICEP, we work in a reference frame that translates
and rotates with the ICEP velocity and rotation of the particle. Since ICEP is free
of force and torque, it will not contribute to (2.18)–(2.19). To prevent the body from
translating or rotating within this frame, we apply a force and torque on the body
to counteract the DEP force and torque. Thus (2.18)–(2.19) give the DEP force and
torque, where any surface of integration that encloses the body may be chosen owing
to mechanical equilibrium, ∇ ·σσσ = 0. We choose the surface at infinity, where the
ionic concentrations are constant and viscous stresses decay quickly enough to be
negligible, leaving only the far-field electrical stresses. In this limit, the stress tensor
reduces to the standard Maxwell tensor for electrostatics σσσM .

The integrals (2.18)–(2.19) may thus be evaluated using the far-field expansions of
the applied potential (2.3) and the induced multipoles (2.16)–(2.17) to obtain

F = Q̃0 Eb + p · Gb + α Q : Hb + . . . , (2.22)

L = p × Eb + . . . , (2.23)

where α = 1/6 in three dimensions and α =1/4 in two dimensions, following Wang
et al. (1997). The classical DEP force, FDEP = p · Gb, and torque, LDEP = p × Eb, are
associated with only the induced dipole moment p. Note again that Q̃0 in (2.22)
reflects the ‘net’ charge as seen in the far field, which almost always vanishes owing
to double-layer screening of the bare charge Q0. The same expansion can also be
obtained from a dyadic tensor representation of the multipolar moments (Washizu &
Jones 1994; Jones & Washizu 1996).

Having mentioned standard electro-osmosis, ICEO, and dielectrophoresis and its
relatives, we briefly mention other effects that arise in such systems, discussed more
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extensively by Morgan & Green (2003) and Ramos et al. (1998). Electrothermal flows
occur when viscous (Joule) heating causes thermal (and thus permittivity) gradients
that couple with the electric fields to give rise to further Maxwell stresses. Thermal
gradients can also give rise to buoyancy-driven flows. In our previous work (Squires &
Bazant 2004), we briefly discussed charge convection (significant Péclet numbers), as
well as such high-ζ effects as surface conduction (significant Dukhin numbers) and
electrochemical reactions (Faradaic currents). For simplicity, we will neglect such
effects here.

We have now built up the machinery necessary to treat the steady-state behaviour
of arbitrarily shaped conducting particles immersed in an electrolytic fluid and subject
to an applied electric field. Below, we treat four paradigmatic examples for ICEO
in systems that break spatial symmetry in some way. In all cases, we pursue the
following general strategy: (i) we find the steady-state electric field, which obeys
Laplace’s equation (2.1) subject to the no-flux boundary condition (2.2); (ii) we find
the induced zeta potential using (2.4), and enforce the total charge condition (2.6);
(iii) we find the slip velocity us from (2.9); (iv) we solve the Stokes equations (or,
equivalently, use us in (2.14) or (2.15) to obtain the ICEP linear and rotational
velocity); and (v) determine the DEP force and torque using (2.22) and (2.23), and
the DEP motion that results.

3. Conductors with inhomogeneous surface properties
3.1. Partial dielectric or insulating coatings

We now begin our treatment of specific examples of ICEO systems that break spatial
symmetry in some way. Our first example is perhaps the simplest mathematically
and the clearest intuitively: a symmetric (spherical or cylindrical) conductor whose
surface properties are inhomogeneous. For example, a conductor could be partially
coated with a dielectric layer that is thin enough not to change the shape appreciably,
but thick enough to suppress ICEO flow locally. That the flow is suppressed is
demonstrated in our earlier work (Squires & Bazant 2004): when the potential drop
between the conducting surface and the bulk electric field occurs over both the
induced double layer and the dielectric layer (thickness λd, permittivity εd), the extra
capacitance of the dielectric layer reduces the induced zeta potential to

ζi =
Φ0 − ΦΓ

1 + ελd/εdλD

≈ λD

λd

εd

ε
(Φ − Φ0), (3.1)

with the rest of the potential drop Φ − Φ0 occurring across the coating itself. For
sufficiently thick dielectric layers, the ICEO slip velocity (which varies with ζi) is
reduced by a factor of O(λD/λd). For simplicity, we will assume the dielectric coating
to be thick enough to render any induced charge (and therefore ICEO slip velocity)
negligible.

A suitable example of such partially conducting bodies are the ‘magnetically modu-
lated optical nanoprobes (MagMOONs)’ described by Anker & Kopelman (2003),
which are magnetic colloidal spheres upon which a thin metal film is evaporatively de-
posited on one hemisphere. The magnetic moment of MagMOONs is not necessary for
the present discussion, although it would clearly allow another avenue for manipula-
tion. Another example involves ‘nanobarcodes’ (Nicewarner-Pena et al. 2001; Finkel
et al. 2004), which are cylindrical rods composed of alternating metallic nanolayers
(silver/gold), used to store information in a colloid or to ‘tag’ biomolecules. Prior
to optically ‘reading’ nanobarcodes in a colloid, they are aligned by an electric field,
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Figure 2. Induced-charge electrophoretic motion of partially coated cylinders. (a) A cylinder
with a partial dielectric coating that breaks left–right symmetry, and (b) a cylinder whose
partial dielectric coating breaks fore–aft symmetry. Such partially coated cylinders, if freely
suspended, experience an ICEP motion in the direction of their coated ends, whether in AC
or DC applied fields. Partially coated conducting cylinders that are held fixed in place act to
pump fluid in the direction away from the coated portion of the cylinder.

and they can also be manipulated by DEP; our analysis shows that ICEO and ICEP
can play important roles in these processes. Theoretical and experimental studies of
the ICEP of metallic rods are underway (Rose & Santiago 2006; Saintillan, Darve &
Shaqfeh 2006).

The clearest and most straightforward example involves a half-coated cylinder with
its symmetry axis oriented perpendicular to the field (that is, left–right asymmetric,
as in figure 2a). The fore–aft orientation (figure 2b) then follows, and introduces an
additional complexity – charge-conservation must be enforced (equation (2.6)). We
then present the general case where an arbitrary amount of the cylinder is coated,
and it is oriented in an arbitrary direction with respect to the field. We conclude by
presenting the analogous results for partially coated spheres.

In general, we consider a cylinder whose surface is metallic for angles |θ | < θ0 (that
is, it is coated in the range θ0 < θ < 2π − θ0). An electric field is applied ‘at infinity’ at
some angle γ ; when γ = 0, the cylinder is fore–aft asymmetric, and when γ = ± π/2,
it is left–right asymmetric. The x̂-axis points along θ = 0, and ŷ and ẑ complete a
standard right-handed Cartesian coordinate system, with the electric field applied in
the (x̂, ŷ), plane.

For cylinders, the bulk electrostatic potential Φ is given by

Φ = −Eb cos(θ − γ )

(
r +

a2

r

)
, (3.2)

giving a tangential field

E‖ = −2Eb sin(θ − γ ) θ̂ . (3.3)

3.2. Cylinder with left–right asymmetric coating

We consider first a left–right asymmetric half-coated cylinder (θ0 = π/2), where the
field angle is γ = π/2 (figure 2a). Using (2.4) and (3.2), the induced zeta potential is
given by

ζi(|θ | < π/2) = 2Eba sin θ, (3.4)

which naturally obeys the no-charge condition, (2.6). Note that this is the same zeta
potential for standard (symmetric) ICEO over the metallic portion, but ζi =0 over



Breaking symmetries in induced-charge electro-osmosis and electrophoresis 77

(a) (b)

Eb

Eb

Figure 3. Streamlines (in the co-moving frame) for the ICEO flow around a conducting
cylinder whose left-hand side is coated with a dielectric layer that suppresses ICEO flow.
Regardless of whether the cylinder asymmetry is (a) left–right or (b) fore–aft with respect to
the field, a freely suspended partially coated cylinder moves in the direction of its coated end.

the coated portion. The slip velocity is therefore given by

us(|θ | < π/2) = −2U0 sin 2θ θ̂ , (3.5)

as shown in figure 2(a). Equation (2.14) gives an ICEP velocity

U = − 4

3π
U0 x̂ ≈ −0.42 U0 x̂, (3.6)

in the direction of the coated end. According to (2.15), the cylinder does not
rotate (as expected from symmetry). Streamlines for the ICEO flow around a half-
coated conducting cylinder oriented in a left–right asymmetric fashion are shown in
figure 3(a).

3.3. Cylinder with fore–aft asymmetric coating

Secondly, we consider a fore–aft asymmetric cylinder (γ =0), as shown in figure 2(b).
Using (2.4), (2.6) and (3.2), the induced zeta potential is found to be

ζi(|θ | < π/2) = 2Eba

(
cos θ − 2

π

)
, (3.7)

and zero elsewhere. Note the second term is required to satisfy the no-charge condition
(equation (2.6)). The slip velocity is therefore given by

us(|θ | < π/2) = 4U0 sin θ

(
cos θ − 2

π

)
θ̂, (3.8)

which, using (2.14), gives an ICEP velocity

U = − 2

3π
U0 x̂ ≈ 0.21U0 x̂. (3.9)

Streamlines for the ICEO flow around a half-coated conducting cylinder oriented
fore–aft with respect to the field are shown in figure 3(b).

3.4. General direction and coating

Finally, we present results for general field angle γ and coating θ0. The approach is
analogous, and gives an ICEP velocity for a freely suspended, asymmetrically coated
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sphere,

Ux =−U0

π

[
3 sin θ0 + sin 3θ0

3
+

cos 3θ0 − cos θ0

2θ0

+ sin2 γ

(
cos θ0 − cos 3θ0

2θ0

− 2 sin 3θ0

3

)]
,

(3.10)

which is always negative (directed towards the coated end). In addition, however, the
ICEP velocity has a non-zero velocity perpendicular to the asymmetry axis, given by

Uy =
U0

6π
sin 2γ

(
2 sin 3θ0 +

3 cos 3θ0 − 3 cos θ0

2θ0

)
. (3.11)

The term in parentheses is negative for θ0 < 0.61π, after which it switches sign –
meaning that the transverse ICEP velocity occurs in either direction, depending on
the field angle γ and the coating angle θ0. Lastly, using (2.15), we find the rotation
speed of the asymmetrically coated cylinder to be

Ω =
U0

πa
sin 2γ

(
sin 2θ0 − 1 − cos 2θ0

θ0

)
ẑ, (3.12)

from which it is evident that the fore–aft asymmetric orientation is unstable to
rotations, and the left–right asymmetric orientation is stable. Because the ICEO
velocity scale U0 varies linearly with a, the rotation rate is independent of cylinder
radius a.

3.5. Partially coated conducting spheres

Finally, we consider the analogous situation for a sphere coated for polar angles
|θ | > θ0, and subjected to an electric field with magnitude αEb in the θ = 0 (or x̂)
direction, along with a transverse field of strength βEb in the θ = π/2, φ = 0 (or ŷ)
direction.

In spherical coordinates, the potential is

Φ = −Eb

(
r +

a3

2r2

)
(α cos θ + β sin θ cosφ), (3.13)

giving an induced zeta potential

ζi = ζc + 3
2
Eba(α cos θ + β cosφ sin θ), (3.14)

where ζc satisfies the total charge constraint, and is given by

ζc = − 3
4
αEba(1 + cos θ0). (3.15)

The sphere moves with velocity

Ux = − 3
64

U0

(
32α2 cos2 θ0

2
sin6 θ0

2
+ 3β2 sin4 θ0

)
, (3.16)

Uy = − 3
4
U0αβ cos2 θ0

2
sin4 θ0

2
(1 + 2 cos θ0), (3.17)

Uz = 0, (3.18)

and rotates with velocity

Ωz = −27

8

U0

a
αβ cos2 θ0

2
sin4 θ0

2
, (3.19)
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Eb

Figure 4. Combining multiple partially coated spheres into a composite object, where the
coated ends are directed in the same sense around the circle, yields a structure that rotates
under any applied field. Here the ‘connector’ is electrically insulating.

about the ẑ-axis. Note that like the coated cylinder, the coated sphere always moves
towards the coated end (Ux < 0 for all α, β and θ0). Also, like the coated cylinder,
the fore–aft orientation is unstable and the left–right orientation is stable.

3.6. Ever-rotating structures

Finally, we discuss an interesting consequence of the above results: since partially
coated symmetric conductors generically ‘swim’ towards the coated end, we can design
objects that rotate steadily under AC or DC electric fields. Figure 4 shows a structure
composed of multiple partially coated conducting bodies connected with insulating
‘spokes’ of length d , oriented so that the coated end ‘points’ in the same sense around
a circle. An AC electric field, applied in any direction, would give rise to an ICEP
motion of the conductors, each of which would contribute to a net rotation of the
body as a whole.

The rotation rates can be calculated as follows: we assume the partially coated
spheres to be located far enough apart that they do not interact hydrodynamically
or electrostatically. Each sphere would have some ICEP velocity if freely suspended,
whereas the ‘spokes’ exert forces on each (parallel and perpendicular to each rod) to
ensure the ensemble moves as a rigid body. A composite spinner composed of two
half-coated (θ0 = π/2) spheres would rotate with a velocity,

Ω2 =
3

128

U0

d
(5 − cos 2γ ), (3.20)

that varies with the angle γ of the spinner relative to the electric field. (Note, however,
that a two-sphere composite with θ0 = π − sin−1(

√
3/8) coating would rotate with a

steady velocity.) A composite spinner composed of three or more half-coated spheres
would rotate with a steady velocity,

Ω3+ =
15

128

U0

d
. (3.21)

Furthermore, since the left–right asymmetric orientation is stable, such composite
bodies will naturally rotate to orient themselves perpendicular to the applied field.

One could imagine various uses for ICEO spinners – because such structures rotate
whenever an electric field (AC or DC) is present, they could obviously be used as
electric field sensors. They could also be used in single-molecule experiments to apply
a given torque to a biomolecule. Or, from a biomimetic standpoint, ICEO spinners
are analogous to rotary motor proteins, such as those that drive bacterial flagellar
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rotation (Berg 2003) and F1 ATP-ase (Kinosita, Adachi & Itoh 2004), and represent
simple rotary motors.

4. Nearly symmetric conducting bodies
4.1. ICEO flows around near-cylinders

The next example we consider involves conducting bodies whose shapes, rather than
surface properties, are asymmetric. Specifically, we consider conductors that are nearly
symmetric, but whose shape is perturbed slightly in an arbitrary asymmetric fashion.
While, strictly speaking, the shape asymmetry must be slight for these results to hold,
we expect the qualitative results to hold for more highly asymmetric shapes. Such
highly asymmetric systems would need to be treated numerically, whereupon the
results of Yariv (2005) could be used. Here, we treat ‘nearly cylindrical’ bodies and
follow with analogous ‘near-spheres’.

Specifically, we consider a cylindrical body with perturbed radius

R = a[1 + εf (θ)], (4.1)

where ε is a small parameter and θ = 0 along the x̂-axis. The vectors normal and
tangent to the surface are given by

n̂ = r̂ − εfθ θ̂ + O(ε2), (4.2)

t̂ = θ̂ + εfθ r̂ + O(ε2), (4.3)

where fθ = ∂f/∂θ . While the method presented here applies to arbitrary perturbations,
we will specifically consider the simplest symmetry-breaking perturbation

f (θ) = P3(cos θ), (4.4)

representing a near-cylinder that ‘points’ in the positive x̂-direction. A constant electric
field, directed along the angle γ , is applied ‘at infinity’: when γ = 0, the body is fore–
aft asymmetric (figure 5a) with respect to the field, and when γ = π/2, the body is
left–right asymmetric (figure 5b).

As above, we determine first the steady-state electric field, from which the induced
zeta potential and slip velocity follow. We then solve the steady Stokes equations
with specified slip velocity. The advantage to treating ‘nearly’ symmetric bodies is
that the boundary itself can be treated perturbatively (see, e.g. Hinch 1991, pp. 46–
47), giving a set of effective boundary conditions that are applied on the simpler
(symmetric) boundary, rather than on the original (complicated) boundary. In so
doing, the problem can be solved and the first effects of shape asymmetry can be
studied.

4.1.1. Electric field

We decompose the electric potential Φ into background and induced components,
Φ =Φb + Φi, where

Φb = −Ebr cos(θ − γ ). (4.5)

The induced component Φi obeys Laplace’s equation (2.1) with boundary conditions

Φi(r → ∞) → 0 and n̂ · ∇Φi |r=R = −n̂ · ∇Φb|r=R, (4.6)

from (2.3) and (2.2).
To find an approximate solution for the electric field, we use a boundary perturba-

tion posing an expansion Φi = Φ0 + εΦ1 + O(ε2). Using (4.2) to expand the boundary
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Figure 5. Two-dimensional asymmetric conductors in uniform (DC or AC) applied electric
fields. (a) The electric field lines and (b) streamlines (in the co-moving frame) of the ICEO flow
around a near-cylinder with broken fore–aft symmetry, with R(θ ) = a[1 + εP3(cos θ )], which,
if free, would move by ICEP towards its blunt end. (c) The electric field and (d) the ICEO
flow for broken left–right symmetry, with R = a[1 + εP3(sin θ )], which would move by ICEP
towards its sharp end. Here ε = 0.1.

conditions, we require the fields to obey

r̂ · ∇Φ0|a = −r̂ · ∇Φb|r=a, (4.7)

r̂ · ∇Φ1|a = [fθ θ̂ · ∇(Φ0 + Φb) − af ∂rr(Φ0 + Φb)]r=a. (4.8)

The leading-order field is given by

Φ0 = −Eb

a2

r
cos(θ − γ ), (4.9)

from which it follows that the first-order correction obeys

∂Φ1

∂r

∣∣∣∣
a

= 2Eb

∂

∂θ
[f (θ) sin(θ − γ )]. (4.10)

Straightforward manipulations give the O(ε) correction for f = P3(cos θ) to be

Φ1 =
a3

8r2
Eb[5 cos(2θ + γ ) − 3 cos(2θ − γ )] − 5a5

8r4
Eb cos(4θ − γ ). (4.11)
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Note that the dipolar component of the induced electric field (equation (4.9)) is
aligned with the applied field, and thus no DEP torque is exerted. Furthermore, no
DEP force is exerted owing to the absence of a gradient in the applied electric field.

The induced zeta potential ζi is then given by (2.4) to be

ζi(θ)

Eba
= 2 cos(θ − γ ) +

ε

8
[−3 cos γ + 5 cos(4θ − γ ) + 3 cos(2θ − γ ) − 5 cos(2θ + γ )] .

(4.12)

Here the constant term (−3ε/8 cos γ ) has been introduced to satisfy the no-charge
boundary condition (2.6), which is given to O(ε) by∫ 2π

0

ζi(1 + εf (θ)) dθ = 0, (4.13)

where we have used the arclength dl =
√

R2dθ2 + dr2 = R dθ + O(ε2).

4.1.2. Fluid flow

The fluid velocity obeys the steady Stokes equations (2.7) with solutions that
decay far from the body, admit no normal flow (2.8) at the surface R, and with
tangential boundary condition (2.9) satisfied on the surface R by the Smoluchowski
slip velocity us

us(θ) =
ε

η
ζi∇Φ

∣∣∣∣
r=R

=
[
us

0(θ) + us
1(θ)

]
t̂, (4.14)

where

us
0 = 2U0 sin 2(θ − γ ), (4.15)

us
1 =

U0

4
[−3 sin(θ − 2γ ) + 3 sin(3θ − 2γ ) + 10 sin(5θ − 2γ )]. (4.16)

We pose an expansion for the fluid velocity, u = u0 + εu1 + . . . and obtain the
leading-order fluid-flow boundary conditions

θ̂ · u0|a = us
0(θ), r̂ · u0|a = 0, (4.17)

which are solved by

r̂ · u0 =
2a(a2 − r2)

r3
U0 cos 2(θ − γ ), (4.18)

θ̂ · u0 =
2a3

r3
U0 sin 2(θ − γ ), (4.19)

as described by Squires & Bazant (2004).
Finally, the boundary conditions for u1 are given by

θ̂ · u1|a = us
1(θ) − af

∂

∂r
[θ̂ · u0]r=a, (4.20)

r̂ · u1|a =

[
fθ θ̂ · u0 − af

∂

∂r
(r̂ · u0)

]
r=a

, (4.21)

where we have used (4.2) and (4.3). For f (θ) = P3(cos θ), the boundary conditions are
given by

θ̂ · u1|a =
U0

8
[−15 sin(θ + 2γ ) + 3 sin(θ − 2γ ) + 15 sin(3θ − 2γ ) + 35 sin(5θ − 2γ )],

(4.22)
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r̂ · u1|a =
U0

8
[−5 cos(θ + 2γ ) + 3 cos(θ − 2γ ) + 9 cos(3θ − 2γ ) + 25 cos(5θ − 2γ )].

(4.23)

To summarize, the above approach takes a flow defined on a non-trivial boundary,
and expresses equivalent boundary conditions over a simple cylinder of radius a. We
can now determine the ICEP velocity of the near-cylinder without solving for the
flow field, by simply using (2.14). The O(1) slip velocity is symmetric and results
in no ICEP. We express the O(ε) slip velocity equations (4.22)–(4.23) in Cartesian
components,

u1|a = ((−θ̂ · u1 sin θ + r̂ · u1 cos θ)x̂ + (θ̂ · u1 cos θ + r̂ · u1 sin θ) ŷ)|r=a, (4.24)

and integrate (2.14) to give the ICEP velocity of the near-cylinder,

U ICEP = − 5
8
εU0[cos(−2γ )x̂ + sin(−2γ ) ŷ]. (4.25)

Note that the cylinder moves in the direction (−2γ ): towards the blunt end when
γ = 0 or γ = π (fore–aft asymmetric), and towards the pointed end when γ = ± π/2
(left–right asymmetric). Furthermore, using (2.15), we find that the near-cylinder has
no ICEP rotation.

To solve for the flow itself, we use a streamfunction for u1,

ψ1 =
U0a

8

∑
n

(
A+

n

an

rn
+ B+

n

an−2

rn−2

)
sin(nθ + 2γ ) +

(
A−

n

an

rn
+ B−

n

an−2

rn−2

)
sin(nθ − 2γ ),

(4.26)

and find A+
1 = −10, B+

1 = 5, A−
1 = 3, B−

1 = 0, A−
3 = 6, B−

3 = −3, A−
5 = 10, and B−

5 = −5,
with all higher terms zero. We have deliberately excluded the Stokeslet term
(proportional to log r) from our expansion in order that (4.26) represent the ICEO
flow around a freely suspended (force- and torque-free) near-cylinder. Flows for γ =0
(fore–aft asymmetric) and γ = π/2 are shown in figure 5(c–d).

That (4.25) gives the correct ICEP velocity can be seen from the flow at infinity
in (4.26), represented by the B1 terms. Furthermore, that a solution can be obtained
without n= 0 terms (i.e. no rotation at infinity), confirms that the near-cylinder does
not rotate.

Generally, perturbations that break reflectional symmetry (Pn, where n is odd) lead
to translational ICEP motion, but not rotation. This can be seen from the form of
the integrals (2.14)–(2.15),

UICEP ∼
∫ (

uθ
1, u

r
1

)
∗ (sin θ, cos θ) dθ, (4.27)

ΩICEP ∼
∫

uθ
1 dθ. (4.28)

A non-zero UICEP requires us to contain a term proportional to sin θ or cos θ , whereas
a non-zero ΩICEP requires a constant term. From (4.20)–(4.21), one can see that odd-n
Pn perturbations give rise to slip velocity perturbations u1 containing only odd-n
harmonic functions (sin nθ and cos nθ , with n odd) and thus can cause translation,
but not rotation. Perturbations that break rotational, but not reflectional, symmetry
(Pn, where n is even) give u1 with even-n harmonic functions and lead to ICEP
rotation, but not translation. Similarly, even-n perturbations can be shown to rotate
via DEP.
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Note that the correction to this analysis occurs at O(ε2). Note, however, that
the transformation ε → −ε reverses the ‘direction’ of the asymmetry of an ICEP
swimmer – but should not affect its ICEP velocity. Thus although the flows and fields
have O(ε2) corrections, the ICEP velocities (or analogously rotations) are accurate to
O(ε3).

The analogous problem for an elongated (P2) near-cylinder rotates with angular
velocity

Ωz =
9

4
ε
εE2

b

η
sin 2γ. (4.29)

The prefactor 9/4 reflects two contributions: 3/2 comes from ICEP and 3/4 from
DEP. Note that the elongated bodies rotate so that the long axis is oriented along
the field axis.

4.2. ICEP motion of a near-sphere

Next, we consider the analogous three-dimensional problem of a nearly spherical
conductor, with perturbed radius

R = a[1 + εf (θ)]. (4.30)

(Note that the perturbation considered here is axisymmetric; a helically asymmetric
perturbation will be discussed shortly.) A normal and two tangent vectors describe
the surface,

n̂ = r̂ − εfθ θ̂ + O(ε2), (4.31)

t̂ = θ̂ + εfθ r̂ + O(ε2), (4.32)

φ̂ = φ̂, (4.33)

where fθ = ∂f/∂θ as above. As for the near-cylinder, we consider the simplest
symmetry-breaking perturbation,

f (θ) = P3(cos θ), (4.34)

‘pointing’ in the positive x̂-direction (θ = 0). A constant electric field is directed along
the angle γ in the (x, y) -plane. For simplicity, we decompose the applied field into
two components: an x̂-component αEb, and a ŷ-component βEb. The calculation is
entirely analogous to the two-dimensional case described above, and thus we simply
provide the main results.

4.2.1. Electric field

The electric field is givenby

Φ0 = −Eb(β sin θ cos φ + α cos θ)

(
r +

a3

2r2

)
, (4.35)

Φ1 = αEba

[
3
28

(1 + 3 cos 2θ)

(
a

r

)3

− 3
224

(9 + 20 cos 2θ + 35 cos 4θ)

(
a

r

)5]

− βEba cos φ

[
3
14

sin 2θ

(
a

r

)3

+ 15
224

(2 sin 2θ + 7 sin 4θ)

(
a

r

)5]
. (4.36)

Note that as with the near-cylinder described above, a P3 perturbation does not
introduce a dipole, giving no DEP torque (and, as seen below, no ICEP rotation).
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The induced zeta potential ζi is then easily obtained as well, giving

ζ0 = 3
2
Eba(α cos θ + β cos φ sin θ), (4.37)

ζ1 = 3
224

εEba[α(1 − 4 cos 2θ + 35 cos 4θ) + β cos φ(26 sin 2θ + 35 sin 4θ )]. (4.38)

4.2.2. Fluid flow

As above, we pose an expansion for the fluid velocity, u = u0 + εu1 + . . . and obtain
the leading-order fluid flow boundary conditions

ê‖ · u0|a = ê‖ · us
0(θ), (4.39)

r̂ · u0|a = 0, (4.40)

where ê‖ is a tangent vector, either t̂ or φ̂, and

us
0 =

9

4

ε

η
E2

ba(α cos θ + β cos φ sin θ)[−(β cos φ cos θ − α sin θ)θ̂ + β sin φφ̂]. (4.41)

The leading-order ICEO flow field is that of Gamayunov et al. (1986) and Squires &
Bazant (2004):

ur =
9a2(a2 − r2)

16r4
U0(1 + 3 cos 2θ̄ ), (4.42)

uθ̄ =
9a4

8r4
U0 sin 2θ̄ . (4.43)

Here, for simplicity of notation, we have used a spherical coordinate system rotated
so that the polar angle θ̄ is measured relative to the electric field.

The boundary conditions for u1 are given by

ê‖ · u1|a = ê‖ · us
1 − af

∂

∂r
[ê‖ · u0]r=a, (4.44)

r̂ · u1|a =

[
fθ θ̂ · u0 − af

∂

∂r
(r̂ · u0)

]
r=a

, (4.45)

where we have used (4.31) and (4.32).
The terms us

1 are somewhat involved, but follow from (4.14) and are straightforward
to obtain with a symbolic mathematics program. Using (4.43), we find

af (θ)∂r u
‖
0 = −4f (θ)u‖

0|a. (4.46)

so that the right-hand side of (4.44) is known. Using (4.41), fθ θ̂ · u0 is straightforward
to compute. Calculating the partial derivative of (4.43) gives

∂r (r̂ · ur
0)|a = − 9

8a
U0(1 + 3 cos 2θ̄ ). (4.47)

To express this in the correct coordinate system, we write

∂r (r̂ · ur
0)|a = − 9

8a
U0

(
1 + 3

x̄2 − ȳ2 − z̄2

a2

)
, (4.48)

where the barred Cartesian coordinates are rotated an angle γ about the ẑ-axis from
the standard spherical coordinate system. Using

x̄ = a(cos γ cos θ − sin γ sin θ cosφ), (4.49)

ȳ = a(sin γ cos θ + cos γ sin θ cosφ), (4.50)

z̄ = a sin θ sin φ, (4.51)
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(a)

Eb

(b)

Eb

Figure 6. Asymmetric near-spheres can be ‘designed’ to translate in a particular direction
relative to the applied electric field. (a) A near-sphere with both P2 and P3 perturbations
aligned along the same axis rotates to align with the applied field, and moves along the field in
the direction of its blunt end. (b) A near-sphere with P2 perturbation oriented perpendicular to
a P3 perturbation rotates so that the P2-axis aligns with the applied field, and the near-sphere
then moves perpendicular to the field in the direction of its sharp end.

in (4.48), we obtain an expression for the final term of (4.45). We then use (2.14) to
evaluate the velocity, giving

U ICEP = 3
28

εU0[−(1 + 3 cos 2γ )x̂ + 2 sin(2γ ) ŷ], (4.52)

and using (2.15) we see there is no ICEP rotation.
As with the near-cylinder, rotations occur for an elongated near-sphere, with radius

f (θ) = P2(cos θ). (4.53)

In this case, no ICEP velocity occurs (as expected by symmetry), but the elongated
near-sphere rotates with angular velocity

Ωz = 9
8
sin 2γ (4.54)

to align itself with the field. Of the prefactor 9/8, 81/80 comes from ICEP and 9/80
from DEP.

We conclude with some general remarks about shape asymmetries and how their
understanding allows metallic particles to be ‘designed’ to give a particualar ICEP
behaviour. Although ICEP is a nonlinear phenomenon, shape-perturbation effects
come in at leading order, whereas interactions between multiple shape perturbations,

R = a

(
1 +

∑
n

εnPn(cos θ)

)
, (4.55)

are of order ε2
n . Thus the leading-order effect of multiple shape asymmetries upon

ICEP behaviour can be simply superposed. Regardless of P3, a particle with positive P2

perturbation rotates to align its P2-axis with the applied field. Once aligned, however,
the orientation of the P3 component determines the ICEP swimming velocity. A near-
sphere with positive P2 and P3 perturbations, both aligned along the same axis as in
figure 6(a), will rotate to align with the field, then translate along field lines in the



Breaking symmetries in induced-charge electro-osmosis and electrophoresis 87

a

d

b

y

x

Eb

Figure 7. A simple asymmetric conducting body which consists of two differently sized
cylinders connected by a negligibly thin conducting wire. An externally applied AC or
DC electric field gives rise to an induced-charge electro-osmotic flow which causes a net
electrophoretic motion.

direction of its blunt end. A near-sphere with positive P2, and a P3 component oriented
in a perpendicular direction, as in figure 6(b), will swim in the plane perpendicular
to the field, towards the sharp end. If the P2 component is negative (disk-like), the
particle will rotate so that the P2-axis is perpendicular to the field. How the particle
swims then depends on the orientation of the P3 component.

4.2.3. Helical perturbations of a sphere

We have seen that breaking reflectional symmetry gives rise to a translational
ICEP motion. Therefore, we might expect that breaking helical symmetry would give
rise to a steady rotational motion. The corresponding calculation is analogous to
the above calculations and thus conceptually straightforward, but is more involved
computationally, as spherical harmonics are inherently non-helical. However, we can
show generally that a helical near-sphere does not rotate via ICEP, at least to O(ε),
using symmetry arguments. Since the helicity remains unchanged under an ε → −ε

transformation, we would expect any ICEP rotation to occur in the same direction
under such a transformation. However, any O(ε) ICEP rotation would change sign
(i.e. direction) under ε → −ε. This does not, of course, rule out helically asymmetric
conductors that steadily rotate about an applied field. Rather, it restricts such
rotations to significantly asymmetric bodies (for example, the composite ICEO
spinners described in § 3.6.)

5. Composite bodies
The above examples concerned bodies whose shape was symmetric or nearly

symmetric. As a final example, we consider a significantly asymmetric object that can
nonetheless be treated perturbatively: a composite body consisting of two symmetric
conductors (radii a >b), held a distance d apart but electrically connected, as in
figure 7. This object is similar to the three-dimensional composite ‘dumb-bells’ whose
(fixed-charge) electrophoretic mobilities were studied theoretically by Fair & Anderson
(1990) and Long & Ajdari (1996), and experimentally by Fair & Anderson (1992).
Here we start with composite bodies composed of spheres rather than cylinders,
so as to initially avoid the issues raised by two-dimensional Stokes flow. However,
cylindrical composites would be easiest to fabricate, as they would simply involve two
different-sized wires placed through a channel, and electrically connected outside the
channel.
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5.1. Two-sphere composite body

We consider a composite body consisting of two spheres of radii a and b = εa,
located at x = 0 and x = d , respectively, where the separation d is large compared to
the radii, and where 0 < ε < 1 (that is, a > b). The spheres are electrically connected,
so that charge may flow freely between the two. We will employ a shorthand notation
for coordinates, in which we use two different spherical coordinate systems, one
centred on each sphere, and denoted by ra and rb. We apply an electric field
Eb = Eb(cos γ x̂ + sin γ ŷ), and define the ‘zero’ of the potential Φ to occur at ra = 0.
Note also that both θ ′

a and θ ′
b are zero along the axis of the electric field.

To leading order, each sphere is immersed in a constant electric field Eb, and the
zeta potential induced around each is given by

ζa = ζ0 + Eba cos θ ′
a, (5.1)

ζb = ζ0 + Ebd cos γ + Ebb cos θ ′
b, (5.2)

where θ ′ is the angle measured relative to the axis of the electric field Eb, and ζ0

enforces charge conservation (2.6), giving

ζ0 = −Eb

b2

a2 + b2
d cos γ, (5.3)

and correspondingly

ζ ′
a = −Eb

b2

a2 + b2
d cos γ, (5.4)

ζ ′
b = Eb

a2

a2 + b2
d cos γ, (5.5)

where the prime denotes the constant (monopolar) component of the induced zeta
potential.

If the spheres were free to move independently, each would move electrophoretically
owing to the interaction of the field with the induced zeta potentials. The dipolar
components of the zeta potentials give no motion, and the monopolar components
would give an electrophoretic velocity

Uf
a = −εE2

bd

η

b2

a2 + b2
(cos γ x̂ + sin γ ŷ) cos γ, (5.6)

Uf
b =

εE2
bd

η

a2

a2 + b2
(cos γ x̂ + sin γ ŷ) cos γ. (5.7)

However, the spheres are not free to float independently. Equal and opposite forces
±F x̂ keep them from moving relative to each other,

x̂ · Uf
a cos γ +

F

6πηa
= x̂ · Uf

b cos γ − F

6πηb
, (5.8)

giving

F

6πη
=

ab

a + b

εE2
bd

η
cos2 γ. (5.9)

The velocity of each sphere is thus given by

Ua = U0

ab(a − b)

(a + b)(a2 + b2)
cos2 γ x̂ − U0

b2

a2 + b2
sin γ cos γ ŷ, (5.10)
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Ub = U0

ab(a − b)

(a + b)(a2 + b2)
cos2 γ x̂ + U0

a2

a2 + b2
sin γ cos γ ŷ, (5.11)

where U0 = (εE2
bd/η). The first term in each expression represents a uniform trans-

lation along the axis of the composite body, in the direction of the smaller particle.
The second term in each represents motion perpendicular to the body axis, giving
both translation

Uy =
U0

4

a2 − b2

a2 + b2
sin 2γ, (5.12)

perpendicular to the field, and rotation

Ωz =
εE2

b

2η
sin 2γ, (5.13)

that tends to align the body with the field.
Finally, we note that the ICEP velocity of the composite two-sphere body is greatest

when

a

b

∣∣∣
max

=
1 +

√
5

2
−

√
1 +

√
5

2
≈ 0.35, (5.14)

and remind the reader that these results hold in the limit where the spheres are well
separated (d � a, b).

5.2. Composite cylinders

A composite body composed of cylinders is perhaps the easiest asymmetric body to
fabricate, as one can simply insert two different-sized wires through a channel, and
electrically connect them outside of the channel. The analysis is similar to that above,
giving induced zeta potentials with constant components

ζ ′
a = −Eb

b

a + b
d cos γ, (5.15)

ζ ′
b = Eb

a

a + b
d cos γ. (5.16)

The ICEP velocity of each cylinder, if it were freely floating, would then be

Uf
a = U0

b

a + b
(−cos2 γ x̂ − sin γ cos γ ŷ), (5.17)

U
f
b = U0

a

a + b
(cos2 γ x̂ + sin γ cos γ ŷ). (5.18)

As above, equal and opposite forces ±F x̂ keep the cylinders from moving relative
to each other. Although forced motion is ill-defined in two-dimensional Stokes flow,
the motion of two cylinders subject to equal and opposite forces is not, giving
leading-order velocities

Ua =
F

8πµ
(2 ln d/a − 1), (5.19)

Ub = − F

8πµ
(2 ln d/b − 1). (5.20)
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Thus, the component of the ICEP velocity aligned with the axis of the composite
body is

Ux = U0

(
2 ln d/a − 1

2(ln d2/ab − 1)
− b

a + b

)
cos2 γ. (5.21)

Furthermore, the ICEP velocity perpendicular to the body axis is

Uy = U0

a − b

a + b

sin 2γ

2
, (5.22)

and the body rotates with angular velocity

Ωz =
εE2

b

η
sin 2γ, (5.23)

to align with the applied field.

6. Induced-charge electrophoresis in a uniform gradient field
The preceding examples have all involved ICEO in systems whose asymmetry lies

in the geometry of the polarizable surface. In this section, we consider systems whose
broken symmetry occurs via a non-uniform applied electric field,

Ea = Eb + Gb · r, (6.1)

where the (spatially constant) Gb gives a gradient in the field intensity (or electrostatic
energy εE2),

∇|Ea|2 = 2Eb · Gb. (6.2)

(Hereinafter, we will drop the subscripts.) We will demonstrate that a symmetric
conducting object in an AC field experiences an induced-charge electrophoretic motion
that drives it up the field gradient, and a dielectrophoretic force that drives it down the
field gradient, consistent with the results of Shilov & Simonova (1981) and Simonova
et al. (2001) for spheres. The net velocity, however, is geometry-dependent.

6.1. Conducting sphere in uniform-gradient field

We begin by examining the motion of an ideally polarizable sphere of radius a in the
applied electric field (6.1) with a uniform gradient. Although this example has been
analysed by Shilov & Simonova (1981), let us study it briefly within the framework
we have built here; we will then treat the cylindrical case to highlight the crucial role
played by geometry, which it seems has not previously been explored.

The steady-state electric potential is given by

Φ = −Eiri − a3

2

Eiri

r3
− 1

2
Gijrirj − a5

9
Gij

(
−δij

r3
+

3rirj

r5

)
, (6.3)

and the zeta potential is then given by

ζ =
3a

2
Ei r̂ i +

5a2

6
Gij r̂ i r̂j . (6.4)

Note that the charge-conservation equation (2.6), is satisfied naturally, since Gij is
traceless and Gij

∫
r̂ i r̂j dΩ = 0. The tangential field outside the double layer is given

by

Ek(a) = 3
2
Ek − 3

2
Ej r̂j r̂k +

5a

3
Gjkr̂j − 5a

3
Gijr̂i r̂j r̂k, (6.5)
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where r̂ = r/r . The local ICEO slip velocity is given by (1.1), using (6.4) and (6.5).
Using (2.12), the ICEP velocity of the sphere is given by

Uk =
ε

η

1

4π

∫ (
3a

2
Eir̂i +

5a2

6
Gijr̂i r̂j

)(
3
2
Ek − 3

2
Ej r̂j r̂k +

5a

3
Gjkr̂j − 5a

3
Gijr̂i r̂j r̂k

)
dΩ.

(6.6)

Of these, only three terms are non-zero:

Uk =
ε

η

1

4π

∫ (
5a2

2
GjkEi r̂i r̂j − 5a2

2
GijElr̂i r̂i r̂j r̂k − 5a2

4
GijElr̂i r̂j r̂k r̂l

)
dΩ. (6.7)

The first two terms,

Uk =
ε

η

1

4π

∫ (
5a2

2
GjkEi r̂i r̂j − 5a2

2
GijElr̂i r̂i r̂j r̂k

)
dΩ =

ε

2η
a2GikEi, (6.8)

give a motion up the gradient that results when the gradient field drives the (dipolar)
charge cloud that has been induced by the constant component of the field. The third
term,

Uk = − ε

η

1

4π

∫
5a2

4
GijElr̂i r̂j r̂k r̂l dΩ = − ε

6η
a2GikEi, (6.9)

causes motion down the gradient, and results when the constant field drives the
(quadrupolar) charge cloud that has been induced by the gradient in the field. The
resulting velocity is

U =
ε

η

a2

3
G · E ≡ ε

η

a2

6
∇

∣∣E2
a

∣∣, (6.10)

so that a conducting sphere experiences an ICEP velocity up the field strength
gradient.

The ICEP motion up the gradient is counteracted by dielectrophoretic motion.
From (6.3), the induced dipole is d = −2πεEa3, which interacts with the gradient field
according to (2.22) to give a DEP force

FDEP = −πεa3∇
∣∣E2

a

∣∣, (6.11)

which causes the sphere to move with Stokes velocity

UDEP = − ε

η

a2

6
∇

∣∣E2
a

∣∣. (6.12)

Remarkably, the dielectrophoretic motion (equation (6.12)) has an identical magni-
tude, but opposite direction, to the ICEP velocity (equation (6.10)). Thus no motion
results, as was originally demonstrated by Shilov & Simonova (1981). However, it is
significant to note that the flow fields established by each of these two physical effects
differ significantly: the DEP motion is force-driven and establishes a flow that decays
with distance as r−1. The ICEP motion, on the other hand, is force-free and decays
as r−2. Thus although a metallic sphere does not move in a field gradient, it does
establish a persistent long-ranged fluid flow, as occurs generically when forced- and
force-free motions are superposed (Squires 2001).

6.2. Conducting cylinder in uniform-gradient field

Another significant point to note is that the precise cancellation of DEP and ICEP
velocities seen above is not universal, but geometry-dependent. The clearest demon-
stration of this fact follows from the two-dimensional (cylindrical) analogue of the
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above problem, which to our knowledge has not been studied before. A conducting
cylinder climbs gradients due to ICEP, which is force-free and well-defined. Dielec-
trophoresis, on the other hand, exerts a force on the cylinder, whose resulting two-
dimensional Stokes flow is ill-defined. Thus the DEP motion of a cylinder depends
sensitively on the geometry of the entire system, and differs from the ICEP velocity.

Since the cylindrical problem is entirely analogous to the spherical problem detailed
above, we simply state key results (the same results are also derived in the next section
using complex variables, where a general non-uniform applied field poses no more
difficulty). The steady-state electrostatic potential is given by

Φ = −Ekrk − a2 Ekrk

r2
− 1

2
Gikrirk − a4

4
Gij

(
−δij

r2
+

2rirj

r4

)
, (6.13)

from which the induced zeta potential can be found to be

ζi = −Φ(a) = 2aEkr̂k + a2Gkj r̂kr̂j . (6.14)

The parallel field adjacent to the screening cloud is given by

Ek(a) = 2Ek − 2Ej r̂j r̂k + 2aGjkr̂j − 2aGijr̂i r̂j r̂k, (6.15)

and the net ICEP velocity,

U =
ε

η

a2

4
∇

∣∣Ea

∣∣2, (6.16)

then follows. The cylinder, if free to move, climbs the field strength gradient via ICEP.
Conversely, a cylinder that is held in place would pump the fluid down the field
strength gradient.

The DEP force follows from the interaction between the induced dipole moment
( p = −2πεa2 E) and the gradient field via F = p · ∇E ≡ Gb · p to give a DEP force
per unit length

FDEP = −πεa2∇|Ea|2, (6.17)

down the field gradient. Since, however, two-dimensional forced Stokes flow is diver-
gent and ill-defined, no DEP velocity results unless some length scale can regularize
the flow at large distances – whether set by inertia, the cylinder length, or the nearest
wall.

However, a cylinder whose position is fixed, and which is subjected to a gradient
field, will pump fluid down the gradient. Holding the cylinder in place requires a force
to balance DEP (which leads to no flow), as well as a force to counteract the ICEP
motion, which gives rise to Stokeslet flow (in addition to the ICEO slip velocity), both
directed down the field gradient.

7. General non-uniform fields and shapes in two dimensions
7.1. Conducting cylinder in an arbitrary applied potential

Let the complex plane, z = x + iy, represent the coordinates transverse to a conducting
cylinder, where the electrolyte occupies the region |z| > a. Let Ψ (z) be the complex
potential, i.e. Φ = ReΨ , and E = −Ψ ′, the electric field (a vector represented by
a complex scalar). Consider an arbitrary applied potential, in the absence of the
cylinder, defined by its Taylor series (valid everywhere):

Ψa =

∞∑
n=0

An(z/a)n, (7.1)
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where An are (complex) multipole coefficients. The first is the (real) background
potential, Φb =A0, relative to an electrode in the external circuit (to allow for fixed-
potential ICEO). The next coefficients are related to the applied electric field, Ea = Eb+
Gbz + Hbz

2/2 + . . . , analogous to (6.1). The background field is Eb = −A1/a, and
the background gradient, Gb = −2A2/a

2. Both are related to the background field-
intensity gradient,

∇|E|2b = ∇|Ψ ′|2(0) = 2Ψ ′(0)Ψ ′′(0) = A1A2/a
3 = 2EbGb, (7.2)

as in (6.2). (See Bazant (2004) for similar manipulations with the complex gradient
operator, ∇ = ∂/∂x + i ∂/∂y = 2 ∂/∂z.)

After double-layer charging, the complex potential in the bulk electrolyte satisfies
the insulating boundary condition, ImΨ = 0 for |z| = a with Ψ ∼ Ψa for |z| → ∞. The
solution is

Ψ = A0 +

∞∑
n=1

[An(z/a)n + An(a/z)n] for |z| > a, (7.3)

where the last terms are the induced multipoles on the cylinder. For example, (up to
numerical prefactors) A1 is the dipole moment induced by the uniform field A1 (a
dipole at ∞); A2 is the quadrupole moment induced by the gradient field A2; etc.

The conductor’s potential, Φ0, relative to the same zero as Φb, is either set externally
or determined by a fixed total charge, Q0 (per unit length), as described above. The
non-uniform zeta potential along the surface, z = a eiθ , is given by

ζ (z) = Φ0 − Φ(z) = ζ0 −
∞∑

n=1

(An einθ + An e−inθ ), (7.4)

since Φ = ReΨ = Ψ on |z| = a and where ζ0 =Φ0 − Φb is the surface-averaged zeta
potential. Assuming a linear double-layer capacitance, this is proportional to the total
charge on the object (per unit length), Q0 = 2πaCζ0.

The ICEO slip velocity is given by

us =(ε/η)(Φ0 − Ψ )Ψ ′ for |z| = a, (7.5)

and the tangential component at z = a eiθ by

uθ = Re (izus) = a2Im (us/z). (7.6)

Substituting (7.3) yields a Fourier series for the slip velocity, from which the two-
dimensional Stokes flow is straightforward to calculate, e.g. using the streamfunction
(4.26). Some examples are given in figure 8.

In two dimensions, the Stone–Samuels formula for the ICEP velocity can be recast
as a contour integral,

UICEP =
ε

2πη

∮
|z|=a

(Ψ − Φ0)Ψ ′ dz

iz
. (7.7)

Although the integrand is not analytic, it is easily made so on the circle, |z| = a, by
the substitution z/a = a/z. The ICEP velocity then follows by residue calculus,

UICEP =
ε

ηa

(
−Φ0A1 +

∞∑
n=1

An−1An

)
. (7.8)
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(a) (b)

(c) (d)

(e) ( f )

FDEP

FDEP

FDEP

UICEP

UICEP

UICEP

Figure 8. Electric fields (a, c, e) and ICEO flows (b, d, f ) around conducting cylinders in
inhomogeneous fields. ICEP velocities and DEP forces are indicated. (a–d) A cylinder in linear
field gradients, with (a, b) A1 = 1, A2 = 0.2, and (c, d) A1 = 1, A2 = 0.2i. (e, f ) A cylinder in a
quadratic field gradient, with A1 = 1, A2 = 0.2 + 0.1i, A3 = 0.025(1 + i).

A similar calculation shows that the ICEP angular velocity vanishes,

ΩICEP = − 1

2πa

∫ 2π

0

Im (e−iθu) dθ = 0, (7.9)

as it must by rotational symmetry.
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Using the relations above, the first two terms in the ICEP velocity can be recast in
a more familiar form,

UICEP =
εζ0Eb

η
+

εa2

4η
∇|E|2b +

ε

ηa

∞∑
n=3

An−1An. (7.10)

Note that each ICEO term is quadratic in the overall magnitude of the applied
potential. The first term is the normal electrophoretic velocity due to the background
field acting on the total charge (which is induced by the field in fixed-potential ICEO);
the second, which agrees with (6.16), results from the background field gradient acting
on the induced dipole; the next, new term involves the gradient of the field gradient
acting on the induced quadrupole; etc.

We now demonstrate the remarkable fact that each of these multipolar force-free
ICEP motions is opposed by a forced DEP motion of the same form. The force may
be calculated from the normal component of the Maxwell stress tensor (2.20),

(2/ε)σσσM · r̂ = −|E|2 r̂ + 2E(E · r̂) = −|E|2 eiθ + 2E Re (e−iθE) = eiθE2, (7.11)

integrating (2.18) around the cylinder,

F =
ε

2i

∮
|z|=a

(Ψ ′a/z)2 dz. (7.12)

Substituting (7.3) and evaluating the integral by residue calculus yields the desired
result,

F = −(2πε/a)

∞∑
n=2

n(n − 1)An−1An. (7.13)

Using (7.2), we recognize the first term as the DEP force in a uniform-gradient field,

FDEP = −(4πε/a)A1A2 = −πεa2∇|E|2b, (7.14)

but equation (7.13) also contains all higher-order multipolar couplings, An−1An, for
any non-uniform applied field. Note that the series expansion for the ICEP velocity
(7.8) has precisely the same form as that for the expansion for the electrostatic force
on the object (7.13), only with coefficients of opposite sign and different magnitudes.
The resulting competition between opposing force-free and forced motions explains
why the electrically induced motion of polarizable colloids is so subtle.

7.2. Conducting cylinders of arbitrary cross-section

By applying conformal mapping to the preceding results, the ICEO slip distribution
can generally be calculated for any (simply connected) two-dimensional object, in an
arbitrary applied electric field. Let w = f (z) be a univalent (conformal and one-to-
one) mapping from the fluid exterior of the object to the fluid exterior of the disk
discussed above, |w| >a. Without loss of generality, we choose f ′(∞) = 1, in order
to preserve the applied potential (7.1). The complex potential is obtained by simply
replacing z with f (z) in (7.3).

The zeta potential on the surface, |f (z)| = a, is then given by

ζ = ζ0 −
∞∑

n=1

[An(z/a)n + An(a/z)n], (7.15)
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(a) (b)

Figure 9. The two-dimensional electric field (a) and steady ICEO flow (b) around a highly
asymmetric triangle-like object in a uniform background field. If fixed, the object pumps fluid
from left to right by ICEO; if free to move, it swims from right to left by ICEP. Although the
electric field and ICEO slip velocity for an infinite system are given exactly by our analysis,
the Stokes flow in (b) is calculated numerically for a large finite box (100 times larger than the
object in each direction) using the finite-element package FEMLAB. (Courtesy of Yuxing Ben.)

and the electric field throughout the fluid, |f (z)| � a, by

E = −(f ′(z)/a)

∞∑
n=1

n(An(f (z)/a)n−1 − An(a/f (z))n+1). (7.16)

Substituting the expressions in (7.5) yields the ICEO slip velocity on |f (z)| = a.
Unfortunately, the Stokes flow is more complicated, and the simple Stone–Samuels
formulae (2.14)–(2.15) no longer apply. Further analytical progress may be possible
by exploiting analytic properties of the biharmonic streamfunction, but it is beyond
the scope of this paper.

For now, we have a partial solution to the general problem, which gives the electric
field and the ICEO slip velocity and leaves only the flow profile to be calculated
numerically. For example, consider a ‘rounded triangle’ produced by the univalent
map, z = f −1(w) = w − αa3/w2, which loses conformality with the formation of three
cusps in the limit |α| → 0.5. As shown in figure 9 for the nearly singular case α = 0.4
(and a = 1), the electric field and ICEO flow are qualitatively similar to what we
calculated above for a near-cylinder of the same three-fold symmetry in figure 5(a, b);
as before, the fluid is pumped past a pair of counter-rotating vortices from left to
right, in the frame of the object, and the ICEP velocity clearly increases with the
strength of the asymmetry. This comparison suggests that our perturbation analysis
above may yield useful predictions, even for highly asymmetric objects.

8. Conclusion
In this paper, we have explored the influence of breaking various symmetries in

induced-charge electro-osmotic and electrophoretic systems. The central theme of this
work is that breaking spatial symmetry in any of a number of ways generically leads to
an ICEO ‘pumping’ flow with a net directionality or, equivalently, a non-zero ICEP ve-
locity, and can furthermore lead to a net rotation towards a steady orientation of freely
suspended polarizable bodies. We have specifically considered five model asymmetric
systems, each of which embodies a different aspect of generically asymmetric bodies
in a manner that remains analytically tractable: (i) symmetrically shaped conductors
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with inhomogeneous surface properties; (ii) conductors with slightly asymmetric
shapes; (iii) composite bodies composed of different-sized symmetric shapes (and
thus potentially highly asymmetric); (iv) uniform field-strength gradients applied
to symmetric shapes (with induced dipole moments); and (v) the general problem
in two dimensions of asymmetric shapes in non-uniform fields (with higher-order
induced multipole moments). In the cases with non-uniform applied fields, we have
also calculated electrostatic forces and torques, which produce dielectrophoresis and
electrorotation, in addition to the force-free slip-driven ICEP translation and rotation.

Throughout the paper, we have mentioned possible applications of ICEO and
ICEP phenemena involving broken symmetries, in microfluidics and colloids, res-
pectively, so we conclude by briefly discussing some directions for further development
of the theory. Our calculations are based on the standard theory of what we call
‘ICEO’ flows in weak applied fields with thin double layers, also employed in the
Russian literature on metal colloids (Gamayunov et al. 1986; Murtsovkin 1996),
the recent work on AC electro-osmosis (Ramos et al. 1999; Ajdari 2000; Gonzalez
et al. 2000), and our previous work on ICEO in microfluidics (Bazant & Squires
2004; Squires & Bazant 2004). In contrast, experiments on ICEO flows in polarizable
colloids (Gamayunov & Murtsovkin 1987; Murtsovkin & Mantrov 1990), at micro-
electrodes in pairs (Ramos et al. 1999, 2003; Green et al. 2002) and periodic arrays
(Brown et al. 2001; Mpholo et al. 2003; Studer et al. 2004), and metal structures in
microchannels (Levitan et al. 2005), are usually performed at much larger voltages,
in order to achieve stronger ICEO flows. Although most experiments confirm the
basic scale of the flow (1.2), the observed velocities are systematically smaller than
predicted by the simple model, which contains no adjustable parameters.

To some extent, it may be possible to fit the experiments by solving the classical
electrokinetic equations (i.e. the Poisson–Nernst–Planck equations for ion transport
coupled to the Stokes equations with an electrostatic body force for the fluid flow) in
the regime of large Dukhin number. As mentioned in § 2, this occurs when the total
(equilibrium + induced) zeta potential, ζ = ζ0 + ζi , exceeds 2kT /e ≈ 50 mV, where
ζi ≈ Eba, and generally tends to reduce ICEO flow. The case of highly charged
particles, eζ0/2kT � 1, subject to weak applied fields, eζi/2kT � 1, has been studied
extensively in the case of normal (fixed-charge) electrophoresis (Dukhin & Shilov
1974; Dukhin 1993), as well as ICEO around charged polarizable spheres (Murtsovkin
1996). In this regime, the equations may be linearized to describe weak concentration
polarization and surface conduction in a (uniformly) highly charged double layer.
Unfortunately, the case of large applied fields, eζi/2kT � 1, is more difficult to analyse,
especially for uncharged particles, ζ0 = 0, owing to highly non-uniform polarization;
the electrochemical problem for spheres and cylinders has been analysed by Chu
(2005) using boundary-layer techniques to describe surface conduction, neutral salt
adsorption and bulk diffusion (Bazant et al. 2004), but the effect of concentration
polarization and diffusio-osmosis on ICEO flow at large voltages (and arbitrary Péclet
number) remains an open question.

Experiments also suggest that theory of ICEO must account better for interfacial
chemistry. Electrochemical interfaces, such as gold/potassium chloride, can display
complicated impedance spectra, sometimes approximated by a ‘constant-phase-angle’
impedance Z ∝ (iω)β with β in the range 0.6–0.9. Although controversial, this boun-
dary condition seems to improve the fit of some experimental data (Green et al.
2002; Levitan et al. 2005). Another puzzling observation is that the strength of ICEO
flow depends sensitively on the type of ions in the electrolyte (e.g. sodium chloride vs.
potassium chloride) and the material of the working conductor (e.g. platinum vs. gold)
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(Levitan 2005). It is also strongly suppressed with increasing concentration beyond
the millimolar range, with a complicated voltage dependence (Studer et al. 2004).
Studies by Oleson, Bruus & Ajdari (2006) indicate that such complicated behaviour
is not captured by such simple treatments, nor by various extensions of the theory
mentioned above. In spite of these subtle issues, however, the simple model used here
is able to predict qualitative (and sometimes quantitative) features of ICEO flows,
while remaining analytically tractable.

Appendix. Force-free motion by surface slip in two dimensions
Brenner (1964) pioneered the use of the reciprocal theorem for Stokes flows to

derive general relations between the forced and force-free (slip-driven) motion of an
isolated three-dimensional body, which have been applied to ICEP by Yariv (2005).
In our work, we make extensive use of the simple explicit formulae (2.12)–(2.13) of
Stone & Samuel (1996) for the translational and rotational velocities of a sphere
(intended to model a swimming micro-organism) which is subject to no external force
and specified slip velocity on its surface. Here we show that their results hold for
two-dimensional bodies as well, despite subtleties of two-dimensional Stokes flows.

The reciprocal theorem holds that∫
u · σ̂ · n̂ dA =

∫
û ·σσσ · n̂ dA, (A 1)

where the integration is taken around the boundaries, and n̂ is the inner normal.
Here u and σσσ refer to the problem of interest: a force-free object with a specified slip
velocity us and (unknown) swimming velocity U0 on the surface Γ . Hatted variables
refer to the same body translating at velocity Û . Note that two-dimensional Stokes
flows around forced bodies diverge logarithmically at infinity (Proudman & Pearson
1957), and force-free flows decay as r−1 or faster. We need not demand, however, that
the hatted flow be physically reasonable – only that it solve the Stokes equations and
therefore serve its role in the reciprocal theorem.

The integrals at infinity vanish: the integrands û ·σσσ and u · σ̂ decay as r−2 ln r and
r−2, respectively, whereas dA = r dθ . On the body surface, the integrand û ·σσσ becomes
simply Û ·σσσ , and this integral vanishes owing to the force-free condition. The only
integral that survives is∫

Γ

u · σ̂ · n̂ dA = U0 · F̂ +

∫
us · σ̂ · n̂ dA, (A 2)

which reduces to

U0 = − 1

2π

∫
us dθ (A 3)

for a circular cylinder, for which σ̂ · n̂ is constant.

We gratefully acknowledge support from the NSF Mathematical Sciences Post-
doctoral Fellowship and Lee A. Dubridge Prize Postdoctoral Fellowship (T.M. S.)
and the US Army through the Institute for Soldier Nanotechnologies, under Contract
DAAD-19-02-0002 with the US Army Research Office (M.Z. B.).

REFERENCES

Ajdari, A. 1995 Electroosmosis on inhomogeneously charged surfaces. Phys. Rev. Lett. 75, 755–758.

Ajdari, A. 1996 Generation of transverse fluid currents and forces by an electric field: electro-
osmosis on charge-modulated and undulated surfaces. Phys. Rev. E 53, 4996–5005.



Breaking symmetries in induced-charge electro-osmosis and electrophoresis 99

Ajdari, A. 2000 Pumping liquids using asymmetric electrode arrays. Phys. Rev. E 61, R45–R48.

Ajdari, A. 2002a Electrokinetic ‘ratchet’ pumps for microfluidics. Appl. Phys. A 75, 271–274.

Ajdari, A. 2002b Transverse electrokinetic and microfluidic effects in micropatterned channels:
lubrication analysis for slab geometries. Phys. Rev. E 6501, art. 016301.

Anderson, J. L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21, 61–99.

Anker, J. N. & Kopelman, R. 2003 Magnetically modulated optical nanoprobes. Appl. Phys. Lett.
82, 1102–1104.

Bazant, M. Z. 2004 Conformal mapping of some non-harmonic functions in transport theory. Proc.
R. Soc. Lond. A Math. Phys. Engng Sci. 460 (2045), 1433–1452.

Bazant, M. Z. & Squires, T. M. 2004 Induced-charge electrokinetic phenomena: theory and
microfluidic applications. Phys. Rev. Lett. 92, art. 066101.

Bazant, M. Z., Thornton, K. & Ajdari, A. 2004 Diffuse-charge dynamics in electrochemical
systems. Phys. Rev. E 70, 021506.

Berg, H. C. 2003 The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54.

Brenner, H. 1964 The Stokes resistance of an arbitrary particle. 4. Arbitrary fields of flow. Chem.
Engng Sci. 19, 703–727.

Brown, A. B. D., Smith, C. G. & Rennie, A. R. 2001 Pumping of water with AC electric fields
applied to asymmetric pairs of microelectrodes. Phys. Rev. E 63, art. 016305.

Bruin, G. J. M. 2000 Recent developments in electrokinetically driven analysis on microfabricated
devices. Electrophoresis 21, 3931–3951.

Chu, K. T. 2005 Asymptotic analysis of extreme electrochemical transport. PhD thesis, MIT.

Dukhin, S. S. 1993 Nonequilibrium electric surface phenomena. Adv. Colloid Interface Sci. 44,
1–134.

Dukhin, S. S. & Derjaguin, B. V. 1974 Electrokinetic phenomena. In Surface and Colloid Science,
vol. 7. John Wiley.

Dukhin, S. S. & Shilov, V. N. 1974 Dielectric Phenomena and the Double Layer in Disperse Systems
and Polyelectrolytes . Wiley.

Dukhin, S. S. & Shilov, V. N. 1980 Kinetic aspects of electrochemistry of disperse systems.
2. Induced dipole-moment and the nonequilibrium double-layer of a colloid particle. Adv.
Colloid Interface Sci. 13, 153–195.

Fair, M. C. & Anderson, J. L. 1990 Electrophoresis of dumbbell-like colloidal particles. Intl J.
Multiphase Flow 16, 663–679.

Fair, M. C. & Anderson, J. L. 1992 Electrophoresis of heterogeneous colloids – doublets of
dissimilar particles. Langmuir 8, 2850–2854.

Finkel, N. H., Lou, X. H., Wang, C. Y. & He, L. 2004 Barcoding the microworld. Anal. Chem. 76,
353A–359A.

Gamayunov, N. I. & Murtsovkin, V. A. 1987 Motion of disperse particles in a uniform alternating
electric-field. Colloid J. USSR 49, 543–544.

Gamayunov, N. I., Murtsovkin, V. A. & Dukhin, A. S. 1986 Pair interaction of particles in
electric-field. 1. Features of hydrodynamic interaction of polarized particles. Colloid J. USSR
48, 197–203.

Giddings, J. C. 1991 Unified Separation Science. John WIley.

Gitlin, I., Stroock, A. D., Whitesides, G. M. & Ajdari, A. 2003 Pumping based on transverse
electrokinetic effects. Appl. Phys. Lett. 83, 1486–1488.

Gonzalez, A., Ramos, A., Green, N. G., Castellanos, A. & Morgan, H. 2000 Fluid flow induced
by nonuniform AC electric fields in electrolytes on microelectrodes. II. A linear double-layer
analysis. Phys. Rev. E 61, 4019–4028.

Green, N. G., Ramos, A., Gonzalez, A., Morgan, H. & Castellanos, A. 2002 Fluid flow induced
by nonuniform AC electric fields in electrolytes on microelectrodes. III. Observation of
streamlines and numerical simulation. Phys. Rev. E 66, art. 026305.

Hinch, E. J. 1991 Perturbation Methods . Cambridge University Press.

Jackson, J. D. 1975 Classical Electrodynamics . John Wiley.

Jeffrey, D. J. & Onishi, Y. 1981 The slow motion of a cylinder next to a plane wall. Q. J. Mech.
Appl. Maths. 34, 129–137.

Jones, T. B. & Washizu, M. 1996 Multipolar dielectrophoretic and electrorotation theory.
J. Electrostat. 37, 121–134.



100 T. M. Squires and M. Z. Bazant

Kinosita, K., Adachi, K. & Itoh, H. 2004 Rotation of F-1 ATPase: how an ATP-driven molecular
machine may work. Annu. Rev. Biophys. Biomolec. Struct. 33, 245–268.

Levich, V. G. 1962 Physicochemical Hydrodynamics . Prentice-Hall.

Levitan, J. A. 2005 Experimental investigation of induced-charge electro-osmosis. PhD thesis, MIT.

Levitan, J. A., Devasenathipathy, S., Studer, V., Thorsen, T., Squires, T. M. & Bazant, M. Z.

2005 Experimental observation of induced-charge electro-osmosis around a metal wire in a
microchannel. Coll. Surf. A 267, 122–132.

Lion, N., Rohner, T. C., Dayon, L., Arnaud, I. L., Damoc, E., Youhnovski, N., Wu, Z. Y.,

Roussel, C., Josserand, J., Jensen, H., Rossier, J. S., Przybylski, M. & Girault, H. H.

2003 Microfluidic systems in proteomics. Electrophoresis 24, 3533–3562.

Long, D. & Ajdari, A. 1996 Electrophoretic mobility of composite objects in free solution:
application to DNA separation. Electrophoresis 17, 1161–1166.

Long, D. & Ajdari, A. 1998 Symmetry properties of the electrophoretic motion of patterned
colloidal particles. Phys. Rev. Lett. 81, 1529–1532.

Lyklema, J. 1995 Fundamentals of Interface and Colloid Science, vol. 2. Academic.

Morgan, H. & Green, N. G. 2003 AC Electrokinetics: Colloids and Nanoparticles . Research Studies
Press, Philadelphia.

Mpholo, M., Smith, C. G. & Brown, A. B. D. 2003 Low voltage plug flow pumping using
anisotropic electrode arrays. Sens. Act. B 92, 262–268.

Murtsovkin, V. A. 1996 Nonlinear flows near polarized disperse particles. Colloid J. 58, 341–349.

Murtsovkin, V. A. & Mantrov, G. I. 1990 Study of the motion of anisometric particles in a
uniform variable electric-field. Colloid J. USSR 52, 933–936.

Newman, J. S. 1991 Electrochemical Systems . Prentice-Hall.

Nicewarner-Pena, S. R., Freeman, R. G., Reiss, B. D., He, L., Pena, D. J., Walton, I. D., Cromer,

R., Keating, C. D. & Natan, M. J. 2001 Submicrometer metallic barcodes. Science 294,
137–141.

Oleson, L. H., Bruus, H. & Ajdari, A. 2006 AC electrokinetic micropumps: the effect of geometrical
confinement, Faradaic current injection, and nonlinear surface capacitance. Phys. Rev. E in
press.

Pohl, H. A. 1978 Dielectrophoresis: the behaviour of neutral matter in nonuniform electric fields .
Cambridge University Press.

Proudman, I. & Pearson, J. R. A. 1957 Expansions at small Reynolds numbers for the flow past a
sphere and a circular cylinder. J. Fluid Mech. 2, 237–262.

Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. 1998 AC electrokinetics: a review of
forces in microelectrode structures. J. Phys. D 31, 2338–2353.

Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. 1999 AC electric-field-induced fluid flow
in microelectrodes. J. Colloid Interface Sci. 217, 420–422.

Ramos, A., Gonzalez, A., Castellanos, A., Green, N. G. & Morgan, H. 2003 Pumping of liquids
with AC voltages applied to asymmetric pairs of microelectrodes. Phys. Rev. E 67, art. 056302.

Reyes, D. R., Iossifidis, D., Auroux, P. A. & Manz, A. 2002 Micro total analysis systems. 1.
Introduction, theory, and technology. Anal. Chem. 74, 2623–2636.

Rose, K. & Santiago, J. G. 2006 Rotational electrophoresis of striped metallic microrods. Phys.
Rev. E submitted.

Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989 Colloidal Dispersions. Cambridge
University Press.

Saintillan, D., Darve, E. & Shaqfeh, E. S. G. 2006 Hydrodynamic interactions in the induced-
charge electrophoresis of colloidal rod dispersions. J. Fluid Mech. (in press).
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